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1. INTRODUCTION

Neutron transport or unpolarized radiation transfer is described by a simple partial differential equa�
tion, namely, by the linear inhomogeneous transport equation. Numerous methods are available for the
numerical solution of equations of this type. An important place among them is occupied by methods that
make use of the characteristic properties of the transport equation. However, the direct application of
characteristics in the numerical solution is not always convenient. In [1–6] Rogov proposed a method for
solving the homogeneous transport equation that combines a minimal two�point stencil in each direction,
a high�order accurate approximation (fourth in space and third in time), and monotonicity, which is
achieved by hybridizing solutions produced by third� and first�order accurate schemes. The resulting sys�
tem of equations can be solved using the running calculation method, which reflects the characteristic
properties of the transport equation without explicit use of characteristics. Another beneficial property of
bicompact schemes is that all their properties are preserved in the case of strongly heterogeneous meshes.
In [7, 8] this method was developed as applied to hyperbolic systems of equations, including gas dynamics
equations. However, its application to the inhomogeneous transport equation [9] required the introduc�
tion of a somewhat different monotonization procedure in the case of large optical depths (see [10]).

Now Shil’kov is developing the method of Lebesgue averaging of absorption coefficients (see [11–24]).
In computational complexity, this method is comparable to the multigroup approximation, while its
numerical accuracy is similar to that of the line�by�line methods (see [21–24]). The transition to Leb�
esgue coefficients means that the range of absorption coefficients becomes much wider than in the multi�
group approach, and it is extended primarily toward larger optical depths. In atmospheric radiation prob�
lems, for example, this means that the atmospheric optical depths for photons of different energy vary by
ten and more orders of magnitude in the transition from the centers of lines to the edges. This wide range
of coefficients cannot be balanced by reasonable spatial mesh refinement so that the optical depth of cells
is less than or on the order of unity for all energies. The optical depth is a dimensionless quantity equal to
the product of the absorption coefficient σ [cm–1] and the characteristic cell size h [cm]. Thus, in the case
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of cells with a large optical depth, the correct reproduction of the behavior of the numerical solution
becomes the basic requirement for a difference scheme applied to the linear transport equation.

2. BICOMPACT ROGOV SCHEMES FOR THE INHOMOGENEOUS TRANSPORT EQUATION 
CONSTRUCTED BY THE METHOD OF LINES

The linear inhomogeneous nonstationary particle transport equation has the form

. (1)

In plane�parallel geometry, the coefficients a and b are interpreted as the projections of the particle
direction onto the coordinate axes, σ is the absorption coefficient, and Q is the source. Note, however, that
Eq. (1) can be treated as a reduced (divided by the direction projection onto the z axis) stationary transport
equation in three�dimensional geometry if the time derivative is replaced by the derivative with respect to
the third spatial variable.

For the initial–boundary value problem to be well posed, we need to set conditions on the boundaries
of the computational domain. Depending on the signs of a and b, a boundary value problem is posed on
those boundaries where a characteristic enters the computational domain. Assuming that both these con�
stants are positive, we supplement Eq. (1) with boundary conditions of the form

(2)

The other combinations of the signs of a and b are treated straightforwardly.

The idea underlying bicompact schemes in the case of one dimension is twofold: (i) the method of lines
is applied in such a manner that a difference approximation is used for some of the variables, while some
of the terms in the equation are left in differential form; and (ii) the set of unknowns is increased. Initially,
a primitive of the unknown function was used as a second unknown and the difference scheme was written
for the difference between primitives in two neighboring nodes. However, the scheme became more convenient
and clearer when the additional unknown was specified as an integral average over a cell. The integral averages
are related to the nodal values of the function and its derivative by the Euler–Maclaurin formula

. (3)

By using (3), we obtain a system of two dynamic equations, of which one is an exact consequence of the
original transport equation, while the other is derived to fourth�order accuracy in space (see [3, 10]).
A time approximation can be obtained using various schemes, for example, third�order accurate diagonal
implicit Runge–Kutta methods.

In the multidimensional case, Rogov used either splitting in directions [5] or a scheme with half�inte�
ger nodes [8] and computed integral averages by applying Simpson’s rule, which preserves fourth�order
accuracy in space. However, in the case of one dimension, it was shown that the monotonicity of the
scheme for discontinuous solutions is better when integral averages are used instead of half�integer values
(see [3]).

Since the nondifferentiability of the solution is rather typical of particle transport problems, in this
work, we also use an expansion of the set of unknown quantities. In contrast to one dimension, in this case,
this set becomes even larger. Specifically, we construct a system of dynamic equations with four unknowns.
To derive a high�order bicompact approximation of this equation without splitting in spatial directions or
introducing half�integer values, we introduce additional variables, namely, the edge fluxes

, (4)
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and the total flux

. (5)

Direct integration of the original equation over a spatial cell gives the following equation for the total flux:

. (6)

Integrating Eq. (1) with respect to any of the spatial coordinates within a cell, we obtain two relations
of the form

, (7)

. (8)

The remaining spatial and time coordinates in these equations are as yet arbitrary. Throughout this
paper, we assume that  and  are local, and the cell index in the mesh sizes is
omitted.

To derive an evolution equation for the edge fluxes, the total flux is treated as an iterated integral and
the fourth�order accurate Euler–Maclaurin formula (3) is applied to the inner integral:

(9)

Replacing the x�derivatives in the last term by those from intermediate relations (8), we obtain

(10)

which makes it possible to obtain an evolution equation for the edge flux difference : 

(11)

Passing from the double integral in (9) to an iterated one in reverse order, in a similar manner, we can

obtain an evolution equation for the edge flux difference : 
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In this case, the most difficult task is to derive an evolution equation directly for the desired quantities.
We introduce the combination 

. (13)

Since Eqs. (11) and (12) contain this quantity, it is desirable to obtain an evolution equation for it.
For this purpose, we consider, for example, the edge flux (the second spatial and time coordinates are arbi�
trary):

(14)

A similar expression can be obtained for . 

Then we have

(15)

This relation yields

(16)

and, with shifted indices,

. (17)

Subtracting Eq. (17) from Eq. (16) produces

. (18)

As yet, Eq. (18) contains a partial y�derivative. Therefore, it is still unsuitable for deriving a system of
four ordinary differential equations (ODEs).

Similar manipulations for  yield
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Adding this to the preceding equation, we obtain
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Since the operator Δxy is only a combination of the indices and signs of the original quantities, its appli�
cation to the original transport equation (1) gives

,

which means that some of the terms in Eq. (20) cancel out; i.e.,

(21)

This equation determines the evolution of the distribution function.
The system of Eqs. (6), (11), (12), and (21) does not contain spatial derivatives and defines a factorized

bicompact scheme of the method of lines for the linear inhomogeneous transport equation in the case of
two dimensions. Equation (6) is an exact consequence of the transport equation, while Eqs. (11), (12),
and (21) are obtained using formulas that are fourth�order accurate in space. Equation (6) is a classical
nonstationary equation, Eqs. (11) and (12) are written for the difference between the desired quantities on
neighboring edges, and Eq. (21) is written for combination (13) of node values. System (6), (11), (12), (21)
with boundary conditions (2) forms a differential algebraic system. As in the case of one spatial variable,
the resulting dynamical system of four equations can be solved using the running calculation method,
which is an indirect consequence of the characteristic properties of the transport equation and the com�
pact approximation. The possibility of running computations is confirmed by the structure of the propa�
gation matrix of the resulting system. For the chosen signs of the coefficients a > 0 and b > 0, the running
computations are directed toward increasing independent variables. 

in a similar manner to the one�dimensional case (see [10]), the spectrum of the propagation matrix of
system (6), (11), (12), (21) is determined by the  block matrices on the main diagonal. Assume that

the variables to be determined in a given cell are ordered as follows: , where
 determines a generalized index of the current cell. Then we obtain the following dynamical

system of the method of lines for the expanded set of variables:

(22)
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The eigenvalues of the block Ann determining the behavior of the solution are

. (24)

3. BICOMPACT TIME APPROXIMATION

Various methods can be used to obtain a time approximation of the resulting system of equations for
the expanded set of variables. The methods considered in [1–10] included primarily diagonal implicit
Runge–Kutta methods, which have remarkable stability properties. A detailed description of the methods
can be found in [24, 25]. They are listed below.

( ) ( ) ( )
( ) ( )

xy xy xy
xy xyu u u

a b u Q
t x y

∂Δ ∂Δ ∂Δ
+ + + σΔ = Δ

∂ ∂ ∂

( ) ( )

( ) ( )

1 1, 1 , 1 1, ,2

1 1, 1 1, , 1 ,2

( ) 12 6

12 6 ( ) ( ).

xy
x x
j j l j l j l j l j

xx

y y xy xy
l l l j l j l j l j

yy

u a aw w u u u u
t hh

b bw w u u u u u Q
hh

+ + + + +

+ + + + +

∂Δ
= − − + − −

∂

+ − − + − − − σΔ + Δ

4 4×

1 1 1, 1{ , , , }y x
l j l jw w w u
+ + + +

=v
( 1)n L j l= − +

11

21 22

1 2

0 0 0

0 0' , ,
...

t

N N NN

⎛ ⎞
⎜ ⎟
⎜ ⎟= + =
⎜ ⎟
⎜ ⎟
⎝ ⎠

A

A A
v Av F A

A A A

2

2

2 2

0

12 6 0

12 60

12 12 6 60

x x

nn

y y

y x x y

a b

a a b
h h

b b a
h h

b a a b
h h h h

−σ − −⎛ ⎞
⎜ ⎟

−σ − −⎜ ⎟
⎜ ⎟
⎜ ⎟= −σ − −⎜ ⎟
⎜ ⎟
⎜ ⎟

−σ − −⎜ ⎟
⎝ ⎠

A

1,2,3,4
3 3 3 y x

x y x y

ah bha b i
h h h h

⎧ ⎫±
λ = −σ − − ±⎨ ⎬

⎩ ⎭



www.manaraa.com

1504

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 53  No. 10  2013

ARISTOVA, MARTYNENKO

1. A�stable third�order accurate Runge–Kutta method with the Butcher tableau 

. (25)

2. L�stable stiffly accurate third�order accurate Runge–Kutta method with the Butcher tableau

. (26)

3. SDIRK: singly diagonal implicit stiffly accurate third�order accurate Runge–Kutta method with the
Butcher tableau

. (27)

The coefficients of the stiffly accurate method (including scheme 2) are related as follows:

, , .

The other coefficients of the scheme have the form

(28)

where  and .

The coefficients c1, c2, and c3 are derived from the unessential Kutta conditions: . 

This method, like method 2, is L�stable and stiffly accurate.

4. CROS: a second�order accurate one�iteration Rosenbrock method with complex coefficients of
the form

. (29)

This method (see [26, 27]) is second�order accurate and has the best possible L2�stability and t�mono�
tonicity. In contrast to methods 1–3, it involves one stage but its implementation requires complex arith�
metic, which is roughly four times as expensive as real arithmetic. Another shortcoming of the method in
the general case is that it involves only one iteration, which imposes a constraint on the time step in the
case of strongly nonlinear problems. For the linear transport equation, there is no such constraint.

For all these methods, the portraits of the stability functions in the complete complex plane were pre�
sented in [6]. The behavior of the stability functions on the negative real axis is shown in the figure.

Test computations of one�dimensional problems (see [9]) have shown that the results produced by
schemes 2 and 3 are fairly close to each other (see the stability function in the figure) and, as predicted by
the theory, the error in method 3 is somewhat smaller. For this reason, scheme 2 is not considered in what
follows.
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4. IMPLEMENTATION OF THE BASELINE SCHEME 
OF FIRST�ORDER ACCURACY IN TIME

For schemes 1 and 2, the baseline scheme is specified by the implicit Euler method. For this reason,
we briefly outline its implementation as applied to system (6), (11), (12), (21). Following Samarskii, the
variables at a new time level are marked with a cup. Then we have

, (30)
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(33)

Define

, , . (34)

Then it follows from (30) that

. (35)

1 1
ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , , )y y x x

l l j jw w a w w b w w w Q x y t dxdy+ +

Π

= − τ − − τ − − στ + τ∫∫

( ) ( ) ( )
1

1 1 1 1 12
12 6 ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

j

j

y

y y y y y y xy y y
l l l l l l l l l l

xx y

a aw w w w w w w b u w w Q Q dy
hh

+

+ + + + +

τ τ
= + − + − + − τΔ − στ − + τ −∫

( ) ( ) ( )
1

1 1 1 1 12
12 6 ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

i

i

x

x x x x x x xy x x
j j j j j j j j j j

yy x

b bw w w w w w w a u w w Q Q dx
hh

+

+ + + + +

τ τ
= + − + − + − τΔ − στ − + τ −∫

( ) ( )

( ) ( )

1 12 2

, 1 , 1, ,

12 12ˆ ˆ ˆ ˆ ˆ

6 6 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2( ) 2( ) ( ).

xy xy x x y y
j j l l

x y

xy xy xy xy
l j l j l j l j

x y

a bu u w w w w
h h

a bu u u u u u u Q
h h

+ +

+ +

τ τ
Δ = Δ + − + −

τ τ
− Δ + − − Δ + − − στΔ + τΔ

1δ = + στ x
x

a
h
τ

γ = y
y

b
h
τ

γ =

1 1
1 ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( , , )y y x x

l l j jw w a w w b w w Q x y t dxdy+ +

Π

⎛ ⎞
⎜ ⎟= − τ − − τ − + τ
⎜ ⎟δ⎝ ⎠

∫∫

0.2

0.1

0

−0.1

−0.2

R(z)

−30 −25 −20 −15 −10 −5 0
z

Imp.Eu.

exp(x)

CROS

SDIRK

L�st
A�st

Stability functions of the implicit Runge–Kutta and Rosenbrock methods [27, 28] on the negative real axis for the implicit
Euler method (Imp. Eu), A�stable method 1 (A�st), L�stable method 2 (L�st), singly diagonal implicit Runge–Kutta
method 3 (SDIRK), and the Rosenbrock scheme with complex coefficients 4 (CROS). For comparison, the figure dis�
plays the exponential approximated by all these stability functions.
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Substituting this into (31) and (32) yields a system of two equations for the unknowns , : 

(36)

where

(37)

(38)

(39)

(40)

System (36) with coefficients (37)–(40) yields relations to the computed coefficients , , ,
of the form

. (41)

Substituting these relations into (33), we find the following quantity at the new time level:

(42)

Finally, the sequence of computations is

(43)

All the quantities at the new time level in (39)–(42) are known either from the boundary condition or
computed in the preceding cell. As a result, running computations can be organized in the method.

The implementation of method 3 (SDIRK) cannot be reduced to a sequence of implicit Euler meth�
ods. To implement the Runge–Kutta method for the system of four equations (6), (11), (12), (21), we
need to calculate their right�hand sides, which depend on the sought quantities according to Butcher tab�
leau (27). In many respects, this procedure resembles one described above in formulas (30)–(43) for an
implicit Euler method, but only for stage right�hand side values. The approach to the elimination of vari�
ables in the system of four equations remains the same. We do not overload the presentation with all the
computational formulas. For the CROS scheme, the situation is similar.

Remark. System (6)�(11)�(12)�(21) with boundary conditions (2) is a differential algebraic problem.
To preserve the order of convergence equal to the order of accuracy, for smooth solutions, a special imple�
mentation of the boundary conditions is required in methods 1–3 (see [6]). The order of accuracy can be
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preserved via the transition to a differential problem by replacing boundary conditions (2) with conditions
of the form

(44)

and conditions they imply for the time derivatives of edge fluxes, which are implemented using the same
Runge–Kutta methods as in the main problem (see [6]).

5. TESTING OF THE METHODS

For this purpose, we used a series of problems with differentiable and piecewise differentiable solutions.
Problem 1. The problem has the infinitely differentiable solution

. 

It was solved in the unit cube with the parameters

.
The initial and boundary conditions were set according to this exact solution, provided that the bound�

ary conditions were properly implemented according to the remark made in Section 4 (see [6]).
Table 1 presents the numerical results produced by solving the problem on meshes of various sizes with

parameters a = 0.1 and b = 0.5.
The experimental order of convergence is close to the theoretically predicted third order, which is

determined by the time mesh. The scheme is fourth�order accurate in space. Therefore, the convergence
rate is determined, first, by the larger mesh in time and, second, by the lower order of accuracy in time.
The third convergence order confirms the validity of the algorithm.

However, a more typical situation in particle transport problems is that the absorption coefficient varies
nearly from cell to cell (contact discontinuities, variations in the absorption coefficient due to varying
density and temperature in the medium in radiative transfer or neutron transport calculations, etc.). For
this reason, we studied another problem, in which the first derivatives of the exact solution are piecewise
continuous.

Problem 2. Consider the problem of stationary transport

(45)

in the unit cube. Here, the unit vector  determines the particle direction. Assume that the absorption
coefficient and the source are constant, but there is a central domain where these parameters are specified
by different constants. More specifically,

,

everywhere (i.e., in domains 1 + 3 below) except for

domain (2): 

in which  and . 

(0, , ) ( , ), 0 , 0 ;

( ,0, ) ( , ), 0 , 0
t t
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= ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
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⎪
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2 0.01σ = 2 1Q =

Table 1. Error of the schemes in the C norm (left column for each scheme) and the effective convergence order of
the schemes (right column) under mesh refinement for Problem 1

Nx × Ny × Nt A�stable scheme (1) Scheme SDIRK (3) Scheme CROS (4)

5 × 5 × 3 2.53709e–3 6.63579e–4 1.79048e–2

10 × 10 × 6 3.50538e–4 2.86 9.11253e–5 2.86 5.71823e–3 1.65

20 × 20 × 12 4.95733e–5 2.82 1.23875e–5 2.88 1.58161e–3 1.85

40 × 40 × 24 6.05332e–6 3.03 1.62555e–6 2.93 4.14719e–4 1.93

80 × 80 × 48 7.41003e–7 3.03 2.08211e–7 2.96 1.05814e–4 1.97

120 × 120 × 72 9.25165e–8 3.00 6.216e–8 2.98 4.72992e–5 1.99
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Assume that particles with a distribution function of unit intensity  impinge on the external
cube side.

In this case, the exact solution of problem (1), (2) can easily be written out:

, (46)

where l1, l2, and l3 are lengths of the characteristic segments in domains 1, 2, and 3. Domains 1 and 3 are
defined as follows:

domain 1: 

domain 3:  

If a characteristic avoids any of these domains, the corresponding length of the characteristic segment
is set equal to zero.

Let z be an analogue of time. If the particle does not move along the z axis ( ), elementary rear�
rangements reduce Eq. (45) to the form of (1): 

. (47)

To this equation, we can apply the solution method proposed above.
Results concerning the grid convergence of the schemes for this problem are presented in Table 2. In

this problem, the derivative of the exact solution has a discontinuity on any characteristic passing through
the irradiated edges at the entrance to the computational volume and the edges of the internal contact
boundary.

For this problem, all the methods exhibit poor convergence, which is caused by the discontinuous first
derivatives on the chosen characteristics. In the case of a single spatial variable, where finer meshes can be
used, the convergence order of all the methods for a similar problem reached about 0.75. The present
result is similar, although further mesh refinement is difficult.

A similar problem in the case of one spatial variable was analyzed in [10]. It was shown that the
monotonization method proposed for the homogeneous transport equation (see [7]) is unsuitable for the
inhomogeneous transport equation so that a unified monotonization parameter cannot be chosen.
A numerical study of the arising errors showed that, according to the stability functions of methods 1–4
(see figure), the three�stage Runge–Kutta methods on characteristics where the solution has a discontin�
uous derivative lead to large negative values of the unknown function, while the CROS scheme lead to
large positive values. Another hybridization method with the use of the CROS scheme was proposed
in [10]. In the present work, this approach is extended to two spatial variables.

Recall that the eigenvalues of propagation matrix (22)–(24) are given by

.

bound 1u =

( ) ( ) ( )bound
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Table 2. Error of the schemes in the C norm (left column for each scheme) and the effective convergence order of
the schemes (right column) under mesh refinement for Problem 2

Nx × Ny × Nt A�stable scheme (1) Scheme SDIRK (3) Scheme CROS (4)

12 × 12 × 8 2.41762e–1 8.04763e–2 1.75006e–1

24 × 24 × 16 2.03971e–1 0.24 4.22492e–2 0.93 1.11359e–1 0.65

48 × 48 × 32 1.54036e–1 0.40 2.49979e–2 0.76 6.07114e–2 0.87

96 × 96 × 64 1.20233e–1 0.36 1.58583e–2 0.66 3.86846e–2 0.65



www.manaraa.com

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 53  No. 10  2013

BICOMPACT ROGOV SCHEMES 1509

In the case of large optical depths, for the computation of a given cell, the principal part of all the eigen�
values is . When the stationary equation (45) is transformed into (47), this part becomes

.

Then, for each cell, r can be determined by the condition 

, , (48)

or

.

Finally, after computing the given cell, the solution is monotonized using the formula

. (49)

This linear monotonizing procedure ensures at least second�order accuracy, since , . 
Table 3 presents the numerical results obtained for Problem 2 by applying the proposed monotoniza�

tion for various optical depths of the central domain. The parameters were specified as

.

For optically thick media, the limiting value in the central domain is given by . For most of the
considered problems, this ratio is equal to unity. As the optical depth increases, the absolute error in all
the methods increases as well, which is especially critical for the largest optical depth. An unpleasant fea�
ture of the SDIRK method is that it produces unphysical negative solutions. 

Problem 3. Consider a hybrid of problems 1 and 2: suppose that the solution is infinitely differentiable,
but the absorption coefficient is piecewise constant as in Problem 2. The differentiability of the solu�

,l jz = −σ τ

/,l j z z zz h h= −σ Ω ≈ λ

CROS SDIRK( ) (1 ) ( ) exp( )rR z r R z z+ − = /,l j z zz h= −σ Ω

SDIRK

CROS SDIRK

exp( )z R
r

R R

−

=

−

CROS SDIRK1, 1 1, 1( ) 1, 1( )ˆ ˆ ˆ(1 )l j l j l ju ru r u
+ + + + + +

= + −

( )r O z= 0z →

,2 2 20.5 (1 ) (1 ) (1 0.5 ), 0.9x z y z zΩ = − Ω Ω = − Ω − Ω =

/2 2Q σ

 
Table 3. Error of the SDIRK scheme in the C norm under mesh refinement for Problem 2 with various absorption
coefficients in the central domain

Nx × Ny × Nt σ2 = 5, Q2 = 5 σ2 = 10, Q2 = 10 σ2 = 15, Q2 = 15 σ2 = 20, Q2 = 20 σ2 = 50, Q2 = 50

12 × 12 × 8 8.92568e–2 1.52769e–1 2.04226e–1 2.4261e–1 3.67529e–1

24 × 24 × 16 4.96752e–2 0.85 8.78582e–2 0.80 1.22223e–1 0.74 1.52449e–1 0.67 2.69412e–1 0.45

48 × 48 × 32 2.55867e–2 0.96 4.52929e–2 0.96 6.43904e–2 0.92 8.27451e–2 0.88 1.71823e–1 0.65

96 × 96 × 64 1.71114e–2 0.58 2.95695e–2 0.62 4.07905e–2 0.66 5.07001e–2 0.71 9.69258e–2 0.83

Table 4. Error of the CROS scheme in the C norm under mesh refinement for Problem 2 with various absorption
coefficients in the central domain

Nx × Ny × Nt σ2 = 5, Q2 = 5 σ2 = 10, Q2 = 10 σ2 = 15, Q2 = 15 σ2 = 20, Q2 = 20 σ2 = 50, Q2 = 50

12 × 12 × 8 8.93476e–2 1.51749e–1 2.02113e–1 2.43838e–1 3.58145e–1

24 × 24 × 16 5.14501e–2 0.80 8.55311e–2 0.83 1.17070e–1 0.79 1.45001e–1 0.75 2.66779e–1 0.42

48 × 48 × 32 2.53810e–2 1.00 6.11941e–2 0.48 7.22182e–2 0.70 9.35314e–2 0.63 1.69586e–1 0.65

96 × 96 × 64 1.911373e–2 0.41 3.46103e–2 0.82 5.11098e–2 0.50 7.55688e–2 0.31 1.12186e–1 0.60

 
Table 5. Error in the monotonized SDIRK scheme with the use of CROS (48), (49) in the C norm under mesh re�
finement for Problem 2 with various absorption coefficients in the central domain at use of

Nx × Ny × Nt σ2 = 5, Q2 = 5 σ2 = 10, Q2 = 10 σ2 = 15, Q2 = 15 σ2 = 20, Q2 = 20 σ2 = 50, Q2 = 50

12 × 12 × 8 8.94596e–2 1.51980e–1 2.00897e–1 2.35083e–1 7.02316e–1

24 × 24 × 16 4.97399e–2 0.85 8.78268e–2 0.79 1.22049e–1 0.72 1.51898e–1 0.63 3.81052e–1 0.88

48 × 48 × 32 2.55867e–2 0.96 4.52931e–2 0.96 6.43833e–2 0.92 8.27194e–2 0.94 1.70701e–1 1.16

96 × 96 × 64 1.71115e–2 0.58 2.95695e–2 0.62 4.07905e–2 0.66 5.07001e–2 0.71 9.6865e–2 0.82
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tion is ensured by the right�hand side of the transport equation: , ,  =
, . The convergence results for this method are given in Table 6.

As can be seen, the methods have the second limiting order of convergence in this problem. An increase
in this characteristic on coarse grids is associated with the fourth order of accuracy in space. Possibly, the
decrease in the convergence order of the Runge–Kutta methods down to the second in the case of a dis�
continuous absorption coefficient is caused by the transmission of stage data between cells with different
absorption coefficients. In a sense, this situation is similar to that arising when the boundary condition is
specified by the exact solution without reducing the differential algebraic problem to differential one (44)
(see [6]).

6. SUMMARY AND CONCLUSIONS

A method for solving a linear inhomogeneous transport equation was proposed that is fourth�order
accurate in space and third�order accurate in time. The method does not innvolve splitting in directions
or introducing additional values of the unknown function at half�integer nodes. A bicompact scheme was
constructed using the method of lines for an expanded set of variables. In comparison with the one�
dimensional case, the number of desired quantities was twice as large. The scheme is a running calculation
one, since the propagation matrix can be inverted using only variables specified in the current cell.

In the case of the three�dimensional stationary transport equation, the time derivative can be replaced
by the third spatial derivative. 

For an infinitely differentiable solution, the order of convergence coincides with the order of accuracy
when the boundary conditions are suitably approximated and the absorption coefficient is a constant.
When the absorption coefficient varies from cell to cell, the actual order of convergence is reduced to the
second even for an infinitely differentiable solution. For a piecewise differentiable solution, the conver�
gence order is even lower and is difficult to determine even experimentally.

Proposed in [10] for solving the inhomogeneous transport equation, the monotonizing procedure
based on a one�iteration single�stage Rosenbrock scheme with complex coefficients (CROS) was also suc�
cessfully applied inities this case. As a result, the error of the method based on a third�order accurate singly
diagonal implicit Runge–Kutta method (SDIRK) was reduced considerably.

In the case of three dimensions, it can be expected that the number of desired quantities would increase
twice (to eight), which would lead to increased difficulties in resolving the propagation matrix within a cell.
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